Agonist-evoked mitochondrial Ca2+ signals in mouse pancreatic acinar cells.
نویسندگان
چکیده
In the present study we have investigated cytosolic and mitochondrial Ca(2+) signals in isolated mouse pancreatic acinar cells double-loaded with the fluorescent probes fluo-3 and rhod-2. Stimulation of pancreatic acinar cells with 500 nm acetylcholine caused release of Ca(2+) from intracellular stores and produced cytosolic Ca(2+) signals in form of Ca(2+) waves propagating from the luminal to the basal cell pole. The increase in the cytosolic Ca(2+) concentration was followed by Ca(2+) uptake into mitochondria. Between onset of cytosolic and mitochondrial Ca(2+) signals there was a delay of 10.7 +/- 0.4 s. Ca(2+) uptake into mitochondria could be inhibited with Ruthenium Red and carbonyl cyanide m-chlorophenylhydrazone, whereas 2,5-di-tert-butylhydroquinone, which inhibits sarco(endo)plasmic reticulum Ca(2+) ATPases, did not prevent Ca(2+) accumulation in mitochondria. Carbonyl cyanide m-chlorophenylhydrazone-induced Ca(2+) release from mitochondria could only be observed after a preceding stimulation of the cell with a physiological agonist or by treatment with 2, 5-di-tert-butylhydroquinone, indicating that under resting conditions mitochondria do not contain releasable Ca(2+) ions. Analysis of the propagation rate of acetylcholine-induced Ca(2+) waves revealed that inhibition of mitochondrial Ca(2+) uptake did not accelerate spreading of cytosolic Ca(2+) signals. Our experiments indicate that in the early phase of secretagogue-induced Ca(2+) signals, mitochondria behave as passive Ca(2+)-buffering elements and do not actively suppress spreading of Ca(2+) signals in pancreatic acinar cells.
منابع مشابه
Role of NAADP and cADPR in the Induction and Maintenance of Agonist-Evoked Ca2+ Spiking in Mouse Pancreatic Acinar Cells
Nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic adenosine diphosphate ribose (cADPR) were first demonstrated to mobilize Ca2+ in sea urchin eggs. In the absence of direct measurements of these messengers, pharmacological studies alone have implicated these molecules as intracellular second messengers for specific cell surface receptor agonists. We now report that in mouse pancr...
متن کاملMeasurement of Ca2+ signaling dynamics in exocrine cells with total internal reflection microscopy.
In nonexcitable cells, such as exocrine cells from the pancreas and salivary glands, agonist-stimulated Ca2+ signals consist of both Ca2+ release and Ca2+ influx. We have investigated the contribution of these processes to membrane-localized Ca2+ signals in pancreatic and parotid acinar cells using total internal reflection fluorescence (TIRF) microscopy (TIRFM). This technique allows imaging w...
متن کاملInvolvement of ryanodine-operated channels in tert-butylhydroperoxide-evoked Ca2+ mobilisation in pancreatic acinar cells.
Reactive oxygen species and related oxidative damage have been implicated in the initiation of acute pancreatitis, a disease characterised in its earliest stages by disruption of intracellular Ca2+ homeostasis. The present study was carried out in order to establish the effect of the organic pro-oxidant, tert-butylhydroperoxide (tBHP), on the mobilisation of intracellular Ca2+ stores in isolate...
متن کاملCannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca2+ oscillations in mouse pancreatic acinar cells
Emerging evidence demonstrates that the blockade of intracellular Ca(2+) signals may protect pancreatic acinar cells against Ca(2+) overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB2Rs modulate intracellular Ca(2+) signals in pancreatic a...
متن کاملArachidonic acid modulates the spatiotemporal characteristics of agonist-evoked Ca2+ waves in mouse pancreatic acinar cells.
In pancreatic acinar cells analysis of the propagation speed of secretagogue-evoked Ca2+ waves can be used to examine coupling of hormone receptors to intracellular signal cascades that cause activation of protein kinase C or production of arachidonic acid (AA). In the present study we have investigated the role of cytosolic phospholipase A2 (cPLA2) and AA in acetylcholine (ACh)- and bombesin-i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 275 49 شماره
صفحات -
تاریخ انتشار 2000